
CSCI 1430 Final Project Report:
Tumor Detection

Wondybrain & Friends: Brian Cheong, Shafiul Haque, John Rathgeber, Nahum Workalemahu
Project Mentor: Winston Li. Brown University

Abstract

In this project, we implement a Convolutional Neural Net-
work (CNN) capable of making diagnoses on the presence
and type of brain tumors. We first explore the medical ne-
cessity and social impact of such an innovation. Then, we
investigate various architectures and datasets on which to
base our project, after which we produce the actual classifier.
Then, we implement additional features to improve the inter-
pretability of the program, which leads into a discussion of
the limited reliability of our model in a real clinical setting.
Additionally, we assess the performance of classification and
its implications on the feasibility of our project. Finally, we
discuss technical choices that led to the success and failures,
finishing with suggestions on points of future study.

1. Introduction
For the final project to culminate this course, we thought

it would be most fulfilling to engage with a real-world ap-
plication that directly deals with computer vision, albeit in
a suitably digestible form. As our resident biology scholar,
it was Brian who proposed that Wondybrain & Friends con-
sider tumor diagnosis as a potential project avenue. As a
group, we figured that among our other options, such an
undertaking would be extremely worthwhile as a solution to
a pressing, real-world issue.

The underlying consequence is as apparent as its name:
appropriate diagnosis for a patient who may suffer from a
condition that threatens their life. Misdiagnosis or delays in
treatment can severely impact patient outcomes, particularly
for conditions as life-threatening as brain tumors. Studies
show that upwards to 10-15% of diagnoses are erroneous;
further, many hospitals in the developing world face staff
shortages. As a result, developing tools to assist medical
professionals in identifying tumors is not only worthwhile
but also deeply rewarding in its potential to save lives. Fur-
thermore, the project has the incredible feature of varying
levels of feasibility, because there exist extensive data and
research regarding the study of tumors on the web.

Consequently, we devised a sequence of implementation

steps so that we may seek out our ambitious goals while
maintaining the ability to retreat to a more humble approach.
Our implementation procedure is delineated below:

1. Small-scale binary tumor detection software (tumor/no
tumor on small dataset)

2. LIME visualizer

3. Saliency map visualizer

4. Multiclass classification on larger dataset (glioma,
meningioma, pituitary, no tumor)

5. Bounding box localization for the tumors

6. 3D reconstruction of the tumor.

We eventually realized that the final two exercises were
certainly too ambitious for our liking, so we aim to focus on
the first four tasks.

2. Related Work
Since portions of our project required the usage of outside

research and understanding how others have approached the
issue, we needed to first gain some contextual information
on how CNNs interact with brain tumors. Inspired by their
approach, we adopted a similar methodology by focusing on
CNNs for tumor classification and integrating visual tools
like saliency maps to enhance interpretability. While our
project operates at a smaller scale, this study offered both a
technical blueprint and a benchmark for the goals we aimed
to achieve. (Abdusalomov et al.) [1]

The implementation by Raul C. Sı̂mpetru provided a
strong foundation for our binary classification task by using
the VGG16 model. The approach addressed the challenges
of a limited dataset and imbalanced classes by leveraging
pre-trained weights and simulating data variations. The high
accuracy (85%) on the test set and the clear visualization of
performance metrics helped us understand how his model
distinguished between tumor and non-tumor images. This
project guided our implementation choices and validated the
effectiveness of deep learning for brain tumor detection. [2]

1



The combination of multiple datasets (figshare, SARTAJ,
and Br35H) helped us to enrich the dataset and better cover
a diverse set of brain tumor MRI images. By identifying
issues with the SARTAJ dataset—where glioma images were
misclassified—we were able to refine our dataset, although
our attempt at implementing a multiclass classification model
initially faced challenges and yielded poor results. [5]

We also used an OpenCV resource to help implement
saliency maps to enhance tumor detection. This approach
involved applying general techniques to visually empha-
size the most significant regions within brain images, which
allowed us to pinpoint areas likely harboring tumors. By
leveraging these methods, we could effectively highlight po-
tential tumor locations, aiding in more precise detection and
classification. [4]

Additionally, in order to train and test the accuracy of
our given dataset, we used Google Colab, similar to how we
trained our CNN model in homework 5.

3. Method
This outlines the key components of the project aimed at

developing tools for brain tumor detection using CNNs and
saliency maps. This includes steps for small-scale binary tu-
mor detection, visualizing model outputs through LIME and
saliency maps, and implementing multiclass classification.

The project begins with a focus on binary tumor detection,
identifying whether an image contains a tumor or not. For
this step, a small dataset containing images labeled as either
”tumor” or ”no tumor” is used. The CNN model is trained on
this dataset to distinguish between the two classes. This task
helps establish a baseline for the model’s ability to detect
the presence of tumors in images. We implemented data
preprocessing, to make sure images are resized to the same
size, model training, which we used Google Colab for, and
evaluation metrics such as accuracy, precision, and recall.

This code snippet highlights the head we used.

1 self.head = [
2 Flatten(),
3 Dropout(rate=0.5),
4 Dense(units=1, activation='

sigmoid')
5 ]

We implemented a binary classification task using
VGG16 architecture, which is known for its strong perfor-
mance in image classification tasks. The code was tailored
specifically for binary tumor detection, and we adapted the
pre-trained weights and modifying the fully connected layers
to classify images into tumor or non-tumor categories. We
fine-tuned the model’s parameters, including learning rate
and number of epochs, to optimize accuracy.

The LIME visualizer is used to understand the decision-
making process of the model, especially when working with

CNNs that can be seen as ”black boxes”. LIME takes a
trained CNN and explains its predictions by approximating
the decision boundaries locally with interpretable models,
such as linear or decision trees, for individual predictions.
The LIME visualizer then provides an output that highlights
regions of the input image that are positively or negatively
correlated with the tumor prediction.

Saliency maps are another method to visualize which
parts of the image the CNN focuses on to make its predic-
tions. They provide insights into how the model identifies
regions that are critical for the tumor/no tumor decision.

This code snippet highlights our saliency map implemen-
tation.

1 with tf.GradientTape() as tape:
2 tape.watch(input_image)
3 predictions = model(input_image

)
4 class_index = tf.argmax(

predictions[0])
5 class_score = predictions[:,

class_index]
6
7 saliency = tape.gradient(

class_score, input_image)
8 saliency = tf.abs(saliency)
9 saliency = tf.reduce_max(saliency,

axis=-1).numpy()[0]
10
11 saliency = (saliency - np.min(

saliency)) / (np.max(saliency) -
np.min(saliency) + 1e-7)

12 saliency = saliency * 3
13
14 return raw_image, saliency

We implemented this segment of the code by doing re-
search on existing saliency maps for different usages. The
implementation involves backpropagating the error through
the network to determine which parts of the input image con-
tribute the most to the final output. The output is a heatmap
that indicates the importance of different regions in the image
for the final classification.

For multiclass classification, the objective is to classify
brain MRI images into one of four classes: glioma, menin-
gioma, pituitary, or no tumor. We included a larger, balanced
dataset is used to ensure that each class has sufficient samples
for effective training. The dataset is split into training, vali-
dation, and test sets to evaluate the model performance. The
model is trained with an appropriate optimizer like Adam
and regularization techniques to prevent overfitting.



Model Accuracy

VGG-16 (binary) 90%
Multi-class N/A
Human Doctors 63.33%

Table 1. Our binary classifier performed at an excellent accuracy
well above the industry low. Our multi-class classifier fell short.

Figure 1. MRI scans of a tumor-containing (top left) and healthy
(bottom left) brain and the LIME images from their classification
by VGG-16 (to their right). Both classifications were true. Note the
clear boundaries of the tumor present in the true positive classifica-
tion’s LIME (top right).

4. Results

Upon testing the completed models, we found that our
classifiers performed at a satisfactory rate, though there
were considerable shortcomings in accuracy as well as in
interpretability. The binary classifier (VGG-16) performed at
an excellent accuracy of 90% on the testing dataset retrieved
from Kaggle (Table 1). This marks a notable improvement
from industry lows in diagnostic accuracy, which in certain
cases such as pediatric, mixed-neuronal glial and histiocytic
tumors, are as low as 63.33% (Table 1) [3]. However, it is
important to note that testing for our binary model was on
a limited dataset of MRI scans that did not contain many
classes of tumors encountered by practicing clinicians.
Acquisition of a more comprehensive dataset containing
these more elusive tumors could be a productive next step.

Furthermore, we found reassuring evidence against
any confounding in the binary classifier’s diagnoses.
As mentioned earlier, we implemented two modes of
interpretability to assess this: LIME and saliency maps. In

the case of the binary classifier, the former suggests the
models operates on reliable, well-grounded evidence (fig. 1).
The top two images in figure one are representative of the
MRI and LIME image of most positive diagnoses by our
binary classifier. Inspecting them, it is clear that the binary
classifier is indeed making diagnoses based on the tumor,
and not on an irrelevant, confounding feature common in
tumor-containing MRI’s. This result is important because
it confirms that its assessment is grounded in the actual
subject of diagnosis and can thus respond to novel tumors
independent of other features in the MRI; this makes it a
more confident option to consult in a clinical setting.

However, the second of the two modes of interpretability,
saliency maps, suggests that the model may not be as tumor-
focused as described. In contrast to the LIME images, the
saliency map of the true positive diagnosis does not indicate
any sort of focus on the tumor, or any particular feature, at
all (fig. 2). Such a lack of focus can be expected of true
negative diagnoses, but it is concerning to see in true posi-
tives because it conceals the reasoning behind classification,
reducing our confidence in the model. It is interesting to
note that despite this, the accuracy of binary classification
was still very high as mentioned. This anomaly suggests that
our model may be advanced to the point that it recognizes
and makes judgements based off of features that humans
would typically disregard; this is certainly a point deserving
of further investigation as it could uncover powerful tools
for diagnoses.

As mentioned in our introduction, we had intended to
extend our work towards multi-class classification on a
larger dataset. This dataset included images of the brain
with glioma, meningioma, and pituitary tumors, or no tumor.
Each of these sections contained significantly more scene
data with which our CNN could train, and test its model
efficacy. Unfortunately however, we were not able to get this
done within the time constraint for a couple of reasons. First
off, we wanted to ensure that the smaller-scale of our project
worked, with both the LIME and saliency map visualizers.
In the meantime, noting that the deadline was quickly ap-
proaching, we settled with utilizing the weights of a previous
design with VGG16 model architecture, and simply mutat-
ing a trainable head. The largest issue that was unfortunately
unreconcilable so late in the project process was the proper
use of git’s large file storage system. For some reason, the
weights were not being properly tracked, and despite a lot
of research on the internet we could not find the proper way
in which to push changes to github. Ultimately, we reasoned
that we could deal with those issues eventually so long as we
are able to test our work at all on colab, so unlike our stream-
lined process from homework 5, we manually uploaded our
project folder to colab so that we could at least test the multi-
class model in the limited remaining time. However new



Figure 2. MRI scans of a healthy (top left) and tumor-containing
(bottom left) brain. The saliency maps from their binary classifica-
tion overlayed on top is shown to their right. Both classifications
were true. Note the the random distribution of saliency across the
true positive diagnosis (bottom right).

problems arose when our testing performance was extremely
low and stagnant, suggesting some significant underfitting.
At this point we were not sure if this was the result of an
overly simplified model, or something more severe within
the underlying code (that may have been a result of the diver-
gent branches by way of some simultaneous pushing/pulling
from github), and we concluded that because any more effort
in this avenue might not be so meaningful because we were
unlikely to finish at that point, we settled with ensuring that
our visualization worked as desired.

4.1. Technical Discussion

In implementing the various classifiers and features of our
project, we had to make a number of design decisions which
affected the quality and performance of our final product.

One, we found that implementing both binary and multi-
class classification for our project brought challenges that
raised the question of balancing complexity and feasibility.
Indeed, the most significant challenge–and failure–we faced
in this project is the multi-class classification. The difficulty
of creating a sufficiently accurate multi-class model made
the choice of settling for the binary classifier with supe-
rior accuracy a desirable choice. We saw that pursuing a
more complex model capable of more specific classifications
comes at the cost of labor as well as accuracy.

Furthermore, the challenge led us to explore other ap-
proaches to what is otherwise a procedural method of simply
selecting an architecture and tweaking parameters. Although

we ultimately settled with the sub-optimal VGG-16 architec-
ture for the multi-class classifier out of necessity, we suggest
the exploration of other architectures as potential avenues
for future improvement.

Second, the decision to implement multiple modes of in-
terpretability shed light on the complexity of interpretability,
which further enforces its importance in machine learning
models. Specifically, the apparent disagreement between the
saliency maps and LIME images suggests that interpretabil-
ity may not be a simple, binary characteristic of a classifier.
Rather, it is a measureable quantity which, like accuracy,
likely comes at a cost. Indeed, we found significantly poorer
interpretability with our multi-class classification model;
again, we see that complexity of classification comes at the
cost of other important features. It continues to probe at
the question of which features should be prioritized. This is
question is as social as it is technical. Indeed, in developing
or updating any given classifier, changes are often shifts in
priority, not necessarily strict improvements.

5. Conclusion
Ultimately, we implemented a resource that can be uti-

lized to properly diagnose a patient. Its impact is extensive,
but among them the most significant is certainly its potential
to save human life. There are certainly several models out
there that have made contributions to solving this worldly
plight, our project imparts a unique underlying impact that
cannot be denied. Most significantly, this project provides
preventative measures within the early stages of a treatment
(via diagnosis/prognosis). Proper classification of the tumor
would allow the doctor to assign the corresponding treat-
ment plan, which only serves to better the quality of life of
the patient, as well as their individual chance of surviving
a potentially life threatening condition. Beyond the more
compelling social implications of this implementation, tu-
mor detection software may also provide a cost benefit to
hospitals, which can potentially extend to patients by way of
quality of care, direct payment plans, etc. There remains to
be seen a ’perfect’ model for this issue in modernity, which
is why so many programmers continue to add to the plethora
of preexisting designs involving this specific subset of scene
recognition. As such, we believe that we have contributed to
the solution of this looming health threat, and have a model
that can only continue to improve with further investment.

References
[1] Akmalbek Bobomirzaevich Abdusalomov, Mukhriddin

Mukhiddinov, and Taeg Keun Whangbo. Brain tumor
detection based on deep learning approaches and magnetic
resonance imaging. National Library of Medicine, 2024.
Accessed: 2024-12-17. 1

[2] Raul Csimpeanu. Vgg16 binary classification, 2024. Accessed:
2024-12-17. 1



[3] Sidpra J Mankad K. Dixon L, Jandu GK. Diagnostic accuracy
of qualitative mri in 550 paediatric brain tumours: evaluating
current practice in the computational era. National Library of
Medicine, 2022. Accessed: 2024-12-17. 3

[4] Adrian Rosebrock. Opencv saliency detection. Py Image
Search, 2018. Accessed: 2024-12-17. 2

[5] Fathy Sahlool. Brain tumors classification cnn, 2024. Accessed:
2024-12-17. 2

Appendix
Powerpoint Presentation

Slides

Team contributions

John I implemented the Binary Classification(classifying
whether or not an image has a tumor) with 90% accu-
racy(using VGG 16). This involved making the github
repository, downloading the dataset from Kaggle, re-
producing the Homework 5 code, changing up parame-
ters to accommodate for binary classification, and fine-
tuning the head to produce the most desirable results.
I also created a few LIME images to put in this report
and our slides using the model’s best checkpoint.

Brian I was responsible for research in the project’s early
stages, finding the sources and outlining the ideas that
we have ultimately decided to finish the project on.
Furthermore, I implemented LIME visualizations for
our classifier and used them to guide improvements
(parameter tweaks and changes to architecture) on the
binary classifier, which ultimately pushed its accuracy
to its current state. I was also the one responsible for the
production of the slide deck presentation and drafting
the final project report.

Shafiul I focused on implementing custom saliency maps
to highlight the important features that the model was
using to make predictions, particularly in distinguishing
between tumor and non-tumor cases. I fine-tuned the pa-
rameters of the saliency map visualizer to ensure that it
accurately reflected the regions contributing most to the
model’s decision. I also tested LIME on various images
to validate its effectiveness in providing interpretable
explanations for the model’s predictions, ensuring that
it accurately represented the key features considered by
the model in its decision-making process.

Nahum My main focus for this project was to attempt the
implementation of the multi-class classification portion
of this project. As evidenced by the report, this sec-
tion of the project ultimately fell through as I realized
quickly that there were a couple of conflicting issues
that I simply could not reconcile (see results section for

further details). Although this segment of the project
unfortunately did not pan out as we had hoped, I was in
charge of setting up the colab workspaces, attempting
to resolve the git lfs issues, merging divergent branches
via github, and all of the individual aspects of the multi-
class implementation (model architecture, retrieving
online datasets and weights as needed, testing and de-
bugging, etc.).

https://docs.google.com/presentation/d/14spAu3EoCOLytd2wlJFDuzOM9W2gPdMTE6-FAtEm35k/edit?usp=sharing

